Wire Before You Walk

Tesfa Asmaral-2, Dhananjay Bhaskar?, Ian Adelstein*, Smita Krishnaswamy3’5’6’7’8, Michael Perlmutter®t
1Department of Computer Science, Pomona College, Claremont, CA, USA
Mathematics and Statistics, Pomona College, Claremont, CA, USA
3Departmerlt of Genetics, Yale School of Medicine, New Haven, CT, USA
4Department of Mathematics, Yale University, New Haven, CT, USA
5Department of Computer Science, Yale University, New Haven, CT, USA
(’Program for Applied Mathematics, Yale University, New Haven, CT, USA
’Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
8Wu Tsai Institute, Yale University, New Haven, CT, USA
9Department of Mathematics, University of California, Los Angeles, CA, USA
fCorresponding Author: perlmutter@math.ucla.edu

Abstract—Node embeddings aim to associate a vector to every
vertex of a graph which can then be used for downstream tasks
such as clustering, classification, or link prediction. Many popular
node embeddings such as node2vec and DeepWalk are based
upon counting which nodes frequently co-occur in random walks
of the graph. In this paper, we show that the performance of such
algorithms can be improved by rewiring the edges of the graph
through a variety of network indices before running DeepWalk.
These rewirings effectively give the random walker an inductive
bias and increase the accuracy of a logistic regression classifier
applied to the node embedding on several benchmark data sets.

Index Terms—learning on graphs, node embeddings, skip-gram
methods

I. INTRODUCTION

Node embeddings aim to represent each vertex of a graph
by a vector in a relatively low dimensional space. Typically,
these vector representations are obtained in an unsupervised
manner and only rely on the network’s geometry, rather than
features or labels associated with each of the nodes.

Many popular algorithms for obtaining node embeddings
rely on the skip-gram framework. These skip-gram based
methods adapt algorithms designed for natural language pro-
cessing, such as Word2vec [4] to the network setting. Whereas
Word2vec aims to produce similar representations of words
that frequently co-occur in real-world sentences, algorithms
such as DeepWalk [5] and Node2vec [2] aim to produce
similar representations of nodes which frequently co-occur
in (possibly biased) random walks of the graph. A notable
advantage of these skip-gram based algorithms is that they
are able to learn representations of the vertices purely from
the geometry of the graph. In particular, they do not require
one to be given a matrix of informative node features.

In this paper we introduce WireWalk, a novel method for
producing node embeddings. Our method is based upon (i)

D.B. was supported by a Yale-Boehringer Ingelheim Biomedical Data
Science Fellowship. S. Krishnaswamy received funding from the NIH
(grants RO1IGM 135929, RO1GM 130847, and ROIHD100035), National Sci-
ence Foundation Career Grant (2047856), and the Sloan Fellowship (grant
FG-2021-15883). This project has been made possible in part by grant number
2019- 202662 from the Chan Zuckerberg Foundation.

rewiring the graph via a variety of indices from network sci-
ence and then (ii) running DeepWalk. Despite the simplicity of
this idea, we show that our method improves the performance
of DeepWalk on several benchmark datasets.

II. OVERVIEW OF METHOD
A. Notation

We let G = (V, E) denote an unweighted, undirected graph
with vertices V = {1,..., N}. We let A denote the adjacency
matrix with entries a,, = 1 if (z,y) € E and a;y = 0
otherwise. For « € V, we let N(z) denote the neighbors of
z, ie., N(z) = {y : (z,y) € E}, and we let |N(z)| denote
the degree of x.

B. The WireWalk algorithm

The WireWalk algorithm is based upon rewiring the graph.
In particular, given an undirected, unweighted graph G =
(V,E) and a bias II : V x V. — Rx, we define a new,
directed graph G’ with adjacency matrix (7,)z ey Where
ey = 1I(z,y). We then run the well-known DeepWalk [5]
algorithm on G’.

The DeepWalk algorithm is based on extracting information
about the vertices of G by running simple random walks on
the graph and counting which vertices frequently appear in the
same walk. In effect, WireWalk runs perturbed random walks
where the walker takes steps which are biased by II. In our
experiments, we use a variety of bias functions as described
below.

1) Common Neighbors:

Tay = |N(2) N N(y)]
2) Salton Index:

__ IN@NN()
v IN(z)[IN (y)|

3) Jaccard Index:
|N(z) NN (y)|

4) Sorenson Index:
__2AN@NNE)
Y IN(2)] + N ()]
5) Hub Promoted Index:

[N (x) NN (y)]
min{[N (), [N (y)|}
6) Hub Depressed Index:

[N (z) " N(y)|
max{|N (z)|, [N (y)[}
7) Leicht-Holme-Newman Index:

__IN@NNE)
Y IN@)IIN ()|
8) Preferential Attachment:
Tay = |N(2)||N(y)]
9) Adamic-Adar Index:

7T$y ==

me =

Ty

1
- , log N (2)]

z€N(z)NN(y
10) Resource Allocation Index:

1
2 IN(2)]

zEN(z)NN (y)

Ty =

11) Tversky Index:
[N (x) "N (y)]
IN(2) UN(y)| +alN(2) \ N(y)| + BIN(y) \ N(z)|

Mgy =

Algorithm 1: WireWalk(G, 7, w, d, v, t)
Input: Graph G = (V, E)
bias II, embedding size d
additional DeepWalk parameters w, vy, t
Output: Matrix of vertex representations ® € RV x4

1) Rewire G using the bias IT to obtain directed graph G’

2) DeepWalk(G', w,d,~,t)

III. RESULTS AND DISCUSSION

To evaluate WireWalk we consider the task of node clas-
sification on the BlogCatalog [6], PPI (Homo Sapiens) [1],
and POS Wikipedia [3] datasets and evaluate performance
according to Macro-F1 score, Micro-F1 score, the Fowlkes
Mallows index, and overall accuracy. The method column
indicates the bias II used before running DeepWalk (except
for the DeepWalk row which is the results without any pre-
processing). On all three datasets, we observe that the rewiring
steps improve performance according to the Micro-F1 score,
the Fowlkes Mallows index, and overall accuracy. Curiously,
performance actually decreases with respect to the Macro-F1
index indicating that our method may not be applicable in
settings where one is highly concerned about imbalances in
class sizes.

Method Macro-F1 | Micro-F1 | Fowlkes Mallows | Accuracy
Jaccard Index 0.0065 0.1380 0.2366 0.1380
Common Neighbors 0.0076 0.1359 0.2267 0.1359
Sorenson Index 0.0065 0.1380 0.2366 0.1380
Salton Index 0.0065 0.1380 0.2366 0.1380
Hub Depressed 0.0065 0.1380 0.2366 0.1380
Hub Promoted 0.0065 0.1377 0.2363 0.1377
Preferential Attachment 0.0072 0.1339 0.2274 0.1339
L.H.N. Index 0.0080 0.1337 0.2215 0.1337
DeepWalk 0.0179 0.1141 0.1514 0.1141

TABLE I

EVALUATION ON BLOGCATALOG GRAPH

Method Macro-F1 | Micro-F1 | Fowlkes Mallows | Accuracy
Jaccard Index 0.0021 0.0483 0.1534 0.0483
Adamic-Adar Index 0.0042 0.0550 0.1289 0.0550
Resource Allocation Index 0.0031 0.0447 0.1253 0.0447
Common Neighbors 0.0033 0.0478 0.1377 0.0478
Sorenson Index 0.0032 0.0504 0.1535 0.0504
Salton Index 0.0039 0.0463 0.1234 0.0463
Hub Depressed 0.0029 0.0478 0.1454 0.0478
Hub Promoted 0.0034 0.0416 0.1278 0.0416
Preferential Attachment 0.0040 0.0478 0.1236 0.0478
L.H.N. Index 0.0034 0.0491 0.1329 0.0491
DeepWalk 0.0177 0.0288 0.0330 0.0288
TABLE II
EVALUATION ON PPI (HOMO SAPIENS)
In all of our experiments, the parameters w, d, 7y, and ¢ used
for WireWalk are chosen based on typical values used for
DeepWalk [2]]. Specifically, we set w = 10,d = 128,~ = 10,
and ¢t = 80. Moreover, for the Tversky index, we set a =
|N(z)| and 8 = |N(y)|. The node feature representations are
input to a one-vs-rest logistic regression classifier with L2
regularization. The train and test data is split using stratified
10-fold cross-validation][]
IV. CONCLUSION
We have introduced WireWalk, a novel method for im-
proving the performance of skip-gram based methods such as
DeepWalk by rewiring the graph in accordance to a variety of
network-science indices and show that our method improves
the performance of DeepWalk on several benchmark datasets.
For the sake of simplicity, in our experiments, we simply run
DeepWalk on the transformed graph after the preprocessing
Code available at https://github.com/TesfaAsmara/wirewalk
Method Macro-F1 | Micro-F1 | Fowlkes Mallows | Accuracy
Jaccard Index 0.0289 0.4702 0.5152 0.4702
Common Neighbors 0.0300 0.4687 0.5141 0.4687
Sorenson Index 0.0289 0.4702 0.5152 0.4702
Salton Index 0.0313 0.4710 0.5163 0.4710
Hub Depressed 0.0289 0.4702 0.5152 0.4702
Hub Promoted 0.0289 0.4702 0.5153 0.4702
Preferential Attachment 0.0289 0.4702 0.5155 0.4702
L.H.N. Index 0.0289 0.4702 0.5152 0.4702
Tversky Index 0.0297 0.4656 0.5078 0.4656
DeepWalk 0.0324 0.4651 0.5070 0.4651
TABLE III

EVALUATION ON POS WIKIPEDIA GRAPH

https://github.com/TesfaAsmara/wirewalk

step. However, we note that our method could also be com-
bined with other methods (after making adjustments to deal
with the fact that the transformed graph is directed). In this
work, so far, we have focused on relatively small datasets and
therefore allow the transformed graph to be dense. However,
in future work, one could develop a more scalable version of
our method by requiring the transformed graph to have the
same sparsity pattern as the original.

(1]

(2]

(3]

[4]

(51

(6]

REFERENCES

Bobby-Joe Breitkreutz, Chris Stark, Teresa Reguly, Lorrie Boucher,
Ashton Breitkreutz, Michael Livstone, Rose Oughtred, Daniel H Lackner,
Jiirg Bihler, Valerie Wood, et al. The biogrid interaction database: 2008
update. Nucleic Acids Research, 36:D637-D640, 2007.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 855-864,
2016.

Matt Mahoney. Large text compression benchmark, 2011.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 701-710, 2014.

Lei Tang and Huan Liu. Relational learning via latent social dimensions.
In Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 817-826, 2009.

	Introduction
	Overview of Method
	Notation
	The WireWalk algorithm
	Common Neighbors
	Salton Index
	Jaccard Index
	Sorenson Index
	Hub Promoted Index
	Hub Depressed Index
	Leicht-Holme-Newman Index
	Preferential Attachment
	Adamic–Adar Index
	Resource Allocation Index
	Tversky Index

	Results and Discussion
	Conclusion
	References

