Phenomenon of Collinearity

Tesfa Asmara and Edray Herber Goins

Say (E, β) is a Toroidal Belyı̆ pair, and denote $\Gamma=\beta^{-1}(\{0,1, \infty\})$ as the collection of quasi-critical points. If Γ is a group, then we have a collinearity condition: given two points $P, Q \in \Gamma$, we have $P \oplus Q \in \Gamma$ as well, so the point $R=[-1](P \oplus Q)$ which lies on a line through P and Q must also be in Γ.

We can ask if there is a collinearity condition that will still hold when Γ is not a group. Consider the Toroidal Belyı̆ pair (E, β) with E defined by $f(x, y)=y^{2}-\left(x^{3}+x^{2}+16\right)$ and $\beta(x, y)=\left(4 y+x^{2}+56\right) / 108$. We can compute the critical points $P=(x, y)$ of β by finding when the following function vanishes: $(\partial f / \partial x)(\partial \beta / \partial y)-(\partial f / \partial y)(\partial \beta / \partial x)=\left(-3 x^{2}-2 x-\right.$ $y x) / 27$. We find that the critical points are $\left\{(4,-18),(-2,12),(22,-108), O_{E}\right\}$. Observe that $P=(4,-18) \in \Gamma$. However, $-P=(4,18) \notin \Gamma$. Thus, Γ is not a group. Yet, we see that $P=(4,-18), Q=(22,-108), R=(22,-108) \in \Gamma$ and that these three quasi-critical points lie on a lie.

Figure 1. $(4,-18),(-2,12),(22,-108)$ on $E: y^{2}=x^{3}+x^{2}+16 x+180$

Research Question. Say (E, β) is a Toroidal Belyı̆ pair, and denote $\Gamma=\beta^{-1}(\{0,1, \infty\})$ as the collection of quasi-critical points. When does Γ have three points P, Q, R that lie on a line?

The outline of our methodology is as follows: Given $\Gamma=\beta^{-1}(\{0,1, \infty\})$ as the collection of quasi-critical points associated to a Toroidal Belyı̆ pair (E, β), find all subsets of three distinct points in Γ and record those Belyĭ pairs that have subsets of points that lie on a line. Computational power limited our ability to calculate the number field L in many cases. As a result, we implemented a "time-out," a specified time interval for computing the number field after which the example would be skipped. Still we were able
to find examples of $\Gamma=\beta^{-1}(\{0,1, \infty\})$ associated to Toroidal Belyĭ pairs (E, β) from LMFDB, where one or more subsets of points $P, Q, R \in \Gamma$ lie on a line. There are three cases for a subset of points $P, Q, R \in \Gamma$.

- Say that $P=Q=R$. Then this is only true if and only if [3] $P=O_{E}$. There are a maximum of 9 such points.
- Say that $P \neq Q$ and $P=R$. Then $[2] P \oplus Q=O_{E} \Longleftrightarrow Q=[-2] P$. There are a maximum of N such points for a elliptic curve of order N.
- Say that P, Q, R are distinct. Then there are $\frac{n(n-1)(n-2)}{6}=\binom{n}{3}$ such points.

Pomona College, 610 North College Avenue, Claremont CA 91711
Email address: tgac2020@mymail.pomona.edu
Pomona College, 610 North College Avenue, Claremont CA 91711
Email address: edray.goins@pomona.edu

