
Abelian Divison Fields Over Real Quadratic Fields
Alex Abrams Tesfa Asmara David Bonds Aniyah Stephen

Japheth Varlack Lori D. Watson

PRiME 2023

1 Background
Enrique González-Jiménez and Álvaro Lozano-Robledo wrote a paper in 2017 and were able to
determined all of the integers n for which there is some elliptic curve E/Q such that Q(E[n])/Q
is abelian [8]. In their paper they proved for all curves E/Q such that Q(E[n]) is as small as
possible, that is, when Q(E[n]) = Q(ζn), and this is only possible when n = 2,3,4,or 5. They were
also able to classify all curves such that Q(E[n]) is contained in a cyclotomic extension of Q or,
equivalently, when Q(E[n])/Q is an abelian extension and this only happens when n = 2,3,4,5,6,
or 8 and they also classified the possible Galois groups that occur for each value of n. They also
used the Weil pairing thm to see when Q(ζn) ⊆ Q(E[n]) are equal and to be more specific to Q.

2 Defintions
Definition 2.1. An abelian extension is a Galois extension whose Galois group is abelian.

Definition 2.2. Galois extension: Let L/F be a Galois extension if |Aut(L/F )| = [L : F ]. And
if L/F is Galois we call Aut(L/F ) := Gal(L/F ) a Galois Group.

Definition 2.3. Isogeny: A morphism of algebraic groups (also known as group varieties) that is
surjective and has a finite kernel.

Definition 2.4. GL2(Fp): The general linear group over Fp is the group of 2 x 2 invertible
matrices with xi ∈ Fp with det(M) ̸= 0.

Definition 2.5. Kronecker - Weber Theorem: Every finite abelian extension of the rational
number field Q is contained within some cyclotomic field.

Definition 2.6. Division Field for an Elliptic Curve: The m-th division field is the field generated
over K by the coordinates of the m-torsion points of an elliptic curve E; we denote it as K(E[m])/K.

3 Our Goal
For our project, we wanted to extend the work of Enrique and Álvaro to determine when division
fields over non-CM elliptic curves are abelian over real quadratic fields. Specifically, we want to
determine when K(E[n])/K is abelian when K is the real quadratic field Q(

√
5).

Over the period of this program, we set out with this goal in hopes of generalizing results
from this to other real quadratic fields. We started by looking at curves that could be defined
over Q(

√
5) but not over Q. We later specified to only looking at division fields of elliptic curves

defined over Q which could be defined over Q(
√

5) as well. This was a better specification as we
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could work more closely off Enrique and Álvaro’s work, which tells us about division fields over
Q.

Our process involved looking at large example sets of elliptic curves. First curves defined over
Q(

√
5), and then some defined over Q and Q(

√
5). We managed to gather tens of thousands of

examples thanks to LMFDB, a database of curves and other related objects. In the next section,
we will discuss specifically what we wanted to look for when gathering some of these datasets.

In these example sets, we wanted to look at curves which have non-abelian division fields over Q
but are abelian over Q(

√
5). This proved to be difficult as we wanted to do work in the SageMath

algebra system, but Sage provides no way to calculate Galois groups over Q(
√

5). The system
always assumes you want the Galois group over Q. We attempted to get around this by creating
our own code to calculate the Galois group over Q(

√
5), but it constantly ran too slow of did not

compute what we wanted it to. In addition, calculating Galois groups over Q to check if division
fields are non-abelian is slow computationally. This meant we could only really check n division
fields for small prime n, such as 2,3, and 5.

Eventually we switch to the Magma algebra software, which could check the conditions we
wanted much faster. We were able together a few examples of various prime division fields and
form our conjectures from that work.

4 Narrowing The Search
We started by showing some propositions that would help us to narrow down what curves would
have the properties we want. As a consequence of the Néron-Ogg-Shafarevich Criterion, we have
the following:

Proposition 4.1. Let 5 ∤ n and 5 ∤ ∆E. If Gal(Q(E[n])/Q) is non-abelian, then
Gal(Q(

√
5)(E[n])/Q(

√
5)) is non-abelian as well.

Proof. Assume 5 is a prime of good reduction. Let K = Q(
√

5), F = Q(E[n]), L = Q(
√

5)(E[n]);
we can say K and F are linearly disjoint since 5 ∤ n and 5 ∤ ∆E . Let G = Gal(F/Q) and let
H = Gal(L/K). If σ ∈ H, the restriction of σF of σ to F is in G, giving us an isomorphism from
H to G proving H ∼= G.

When 5 ∤ ∆E , this means that 5 is a prime of good reduction. If this is not the case, it is a
prime of bad reduction. This proposition tells us that if we want curves whose division fields
are non-abelian over Q but abelian over Q(

√
5), then we need them to have 5 as a prime of bad

reduction. This narrows down which curves could be examples of what we want.
Another proposition we have is

Proposition 4.2. Let L, C, F be fields such that F ⊆ C ⊆ L. Let L/F be Galois, and let C/F be
Galois. Then if Gal(C/F ) is not abelian, Gal(L/F ) is not abelian.

Proof. Let G = Gal(L/F ). We know Gal(K/F ) ∼= G/N for some N ⊴ G (In fact, we know
N ∼= Gal(L/K)). Since G/N is not abelian, we have that for some g, h ∈ G, gN · hN ̸= hN · gN .
By the definition of the group law of quotients, this means (gh)N ̸= (hg)N . gh ∈ G = hg ∈ G ⇒
(gh)N = (hg)N . By the contrapositive, (gh)N ̸= (hg)N ⇒ gh ̸= hg, so G is not abelian.

This has a useful corollary for us to use

Corollary 4.3. If K(E[n])/K is not abelian, then K(E[dn])/K is not abelian for d ∈ Z+. And
if K(E[dn])/K is abelian, then K(E[n])/K is abelian.

This tells us we want to look at n division fields where n is prime. If we can show that for some
prime n, that the n division field is non abelian over Q(

√
5), then we can say that the division

field for all multiples of n is also non-abelian over Q(
√

5).
Additionally, the contrapositive statement means that if we can say something about a com-

posite n, such as 4, being abelian, we can then say that the d division fields, where d is a factor
of n, is abelian as well.
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5 Main Results
In this section, we list the main results from our research.

5.1 2 Division Fields
The 2 division field of an elliptic curve is the field containing the roots of x3 + Ax + B. The
polynomial x3 + Ax + B can split in different ways producing different corresponding Galois
groups:

1. All of it’s roots could be in Q and Gal(Q(E[2])/Q) ∼= {e}.

2. If it has 1 rational root and 2 irrational roots, Gal(Q(E[2])/Q) ∼= C2.

3. If the roots are irrational and ∆E is a perfect square, then Gal(Q(E[2])/Q) ∼= C3.

4. If the roots are irrational and ∆E is not a perfect square, then Gal(Q(E[2])/Q) ∼= S3.

All of those are abelian except for the S3 case. For this, we have found a result:

Theorem 5.1. If Gal(Q(E[2])/Q) is isomorphic to S3, then Gal(Q(E[2])/Q(
√

5)) is abelian if
and only if ∆E = 5d, where d is a perfect square.

5.2 3 Division Fields
The 3 division field of an elliptic curve is the smallest field containing the 3-torsion points
of the elliptic curve. Gal(Q(E[3])/Q) is isomorphic to the following subgroups of GL2(F3):
C2, D4, D6, SD16, and S3.

Theorem 5.2. If Gal(Q(E[3])/Q) is isomorphic to D6, S3, or SD16, then Gal(Q(E[3])/Q(
√

5))
remains nonabelian.

5.3 5 Division Fields
The 5 division field of an elliptic curve is the smallest field containing the 5-torsion points of
the elliptic curve. By a result of Serre, Gal(Q(E[5])/Q) is isomorphic to one of the following:
C2 × C4, C2

4 , OD16, C4 ≀ C2, C2 × F5, C24 : C2, C4 × F5, C4, F5, or GL2(F5).

Theorem 5.3. If Gal(Q(E[5])/Q) is isomorphic to OD16, then Gal(Q(E[5])/Q(
√

5)) is abelian.

6 "Future Work"- its not supposed to be named that but
I’ll change that after more is written

1. Q(E[4])/Q
Let L, C, F be fields such that F ⊆ C ⊆ L. Let L/F be Galois, and let C/F be Galois.
Then if Gal(C/F ) is not abelian, Gal(L/F ) is not abelian.
If K(E[n])/K is not abelian, then K(E[dn])/K is not abelian for d ∈ Z+. And if K(E[dn])/K
is abelian, then K(E[n])/K is abelian.

K

K(E[n])

K(E[dn])
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Q(E[4])/Q(
√

5) : 80.a1(GpD4 → C2
2 )

2. Q(E[7])/Q
If the 7 division field is defined over Q(

√
5), then it has 3 quadratic subfields: Q(

√
5),Q(

√
−7),Q(

√
−35).

This means Gal(Q(E[7])/Q) has 3 index two subgroups. Since the Galois group is a sub-
group of GL2(F7), we only need to look at subgroups of GL2(F7) which have at least 3 index
2 subgroups:
C2

6 , C6 × S3, C2 × F7, C6 × D7, C6 ≀ C2, C6 × F7, C3 × SD32.
These groups are subgroups of GL2(F7) that can appear as Galois groups of 7-division fields
over Q that have at least 3 subgroups of index 2.

So far, the potential groups with index 2 subgroups that could become abelian after a base
change to Q(

√
5) are: C6 × S3, C6 ≀ C2, and C3 × SD32.

3. Q(E[10])/Q
Q(E[10])/Q(

√
5) : y2 = x3 − x(GpC2

2 : C4 → C3
2 )

4. Q(E[d2])/Q

5. Plans for Q(E[p])/Q
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