
Abstract

A Belyĭ map $\beta: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a rational function with at most three critical values; we may assume these values are $\{0,1, \infty\}$. Replacing \mathbb{P}^{1} with an elliptic curve $E: y^{2}=x^{3}+A x+B$ there is a simiar definition of a Belyí map $\beta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$. Since $E(\mathbb{C}) \simeq \mathbb{T}^{2}(\mathbb{R})$ is a torus, we call (E, β) a Toroidal Belyǐ pair There are many examples of Belyy maps $\beta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ associated o elliptic curves; several can be found online at LMFDB. Given such a Toroidal Bely map of degree N, the inverse image $G=\beta^{-1}(\{0,1, \infty\})$ is a set of N elements which contains the critical points of the Bely m map In this project, we investigate when G is contained in $E(\mathbb{C})_{\text {tors }}$ This is work done as part of the Pomona Research in Mathematics Experience (NSA H98230-21-1-0015).

Elliptic Curves

An elliptic curve, E, is a non-singular curve of genus one. In other words it is a curve generated by an equation $f(x, y)=0$ where
$f(x, y)=y^{2}+a_{1} x y+a_{3} y-\left(x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right)$
and where all $a_{i} \in \mathbb{C}$ with O_{E} being the "point at infinity."

- The set of complex points on an elliptic curve $E(\mathbb{C})$ is a torus.

The Group Law on an Elliptic Curve

- There exists a binary operation \oplus such that $(E(\mathbb{C}), \oplus)$ forms a group with O_{E} as the identity. This operation is known as the group taw on the

The

- An isogeny is a map $\psi: E \rightarrow X$ where E and X elliptic curves such that $\psi(P \oplus Q)=\psi(P) \oplus \psi(Q)$ for $P, Q \in E(\mathbb{C})$
$\mathbb{P}^{1}(\mathbb{C})$

Critical Points and Toroidal Belyı̆ Maps Fix a rational function $\beta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ where $\mathbb{P}^{1}(\mathbb{C})=\mathbb{C} \cup\{\infty\}$. - $P \in E(\mathbb{C})$ is a critical point if $\frac{\partial f}{\partial x}(P) \frac{\partial \beta}{\partial y}(P)-\frac{\partial f}{\partial y}(P) \frac{\partial \beta}{\partial x}(P)=0$ - $q \in \mathbb{P}^{1}(\mathbb{C})$ is a critical value if $q=\beta(P)$ for some critical point P. - $Q \in E(\mathbb{C})$ is a quasi-critical point if $\beta(Q)=\beta(P)$ for critical point P. - A Belyĭ map is function β as above with ≤ 3 critical values, $\{0,1, \infty\}$. - A Toroidal Belyy pair is a pair (E, β), where E is an elliptic curve and β
is a Belyı map associated to E.

LMFDB Label	Elliptic Curve X	Belyĭ Map $\phi: X(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$	Group Generated by $\phi^{-1}(\{0,1, \infty\})$
3T1-3 3 3 3-a	$y^{2}=x^{3}+1$	$\frac{1-y}{2}$	Z_{3}
4T1-4_4_2.2-a	$y^{2}=x^{3}-x$	x^{2}	$Z_{2} \times Z_{2}$
4T5-4_4_3.1-a	$y^{2}=x^{3}+x^{2}+16 x+180$	$\frac{4 y+x^{2}+56}{108}$	Z_{8}
5T4-5_5_3.1.1-a	$y^{2}+x y=x^{3}-28 x+272$	$\frac{(x+13) y+3 x^{2}+4 x+220}{432}$	$Z_{2} \times Z_{10}$
6T1-6_2.2.2_3.3-a	$y^{2}=x^{3}+1$	$-x^{3}$	$Z_{2} \times Z_{6}$
$6 \mathrm{~T} 4-3.3$ _3.3_3.3-2	$y^{2}=x^{3}-15 x+22$	$\frac{8(x-2)^{2}-\left(x^{2}-4 x+7\right) y}{16(x-2)^{2}}$	Z_{6}
6T5-6 6 6 3.1.1.1-a	$y^{2}=x^{3}+1$	$\frac{(1-y)(3+y)}{4}$	$Z_{2} \times Z_{6}$
6T6-6_6_2.2.1.1-a	$y^{2}=x^{3}+6 x-7$	$\frac{(x-1)^{3}}{27}$	$Z_{2} \times Z_{4}$
6T7-4.2_4.2 3.3-a	$y^{2}=x^{3}-10731 x+408170$	$\frac{11907(x-49)}{(x-7)^{3}}$	$Z_{2} \times Z_{4}$
${ }^{6 T 12-5.1 _5.1 _3.3-b ~}$	$y^{2}+x y+y=x^{3}+x^{2}-10 x-10$	$27 \frac{(x+4)\left(2 x^{2}-2 x-13\right)-(x+1)^{2} y}{\left(x^{2}-x-11\right)^{3}}$	$Z_{2} \times Z_{8}$
6T12-5.1_5.1_5.1-a	$y^{2}=x^{3}+x^{2}+4 x+4$	$-16 \frac{\left(x^{2}-2 x-4\right) y+8(x+1)}{(x-4) x^{5}}$	Z_{6}
8T2-4.4_4.4_2.2.2.2-a	$y^{2}=x^{3}+x$	$\frac{(x+1)^{4}}{8 x\left(x^{2}+1\right)}$	$Z_{2} \times Z_{4}$
8T7-8_8_2.2.1.1.1.1-1-a	$y^{2}=x^{3}-x$	x^{4}	$Z_{2} \times Z_{4}$

$$
\begin{aligned}
& \text { Example } \# 1: 4 \mathrm{~T} 1-4 _4 _2 \cdot 2-\mathrm{a} \\
& \text { Consider the Toroidal Belyĭ pair }(E, \beta) \text { in terms of } \\
& E: y^{2}=x^{3}-x \quad \text { and } \quad \beta(x, y)=x^{2} .
\end{aligned}
$$

The quasi-critical points are torsion:
$\begin{array}{lllll}\text { Point } & (0,0) & (1,0) & (-1,0) & O_{E} \\ \text { Order } & 2 & 2\end{array}$
These points form a group
$\beta^{-1}(\{0,1, \infty\})=\left\{(0,0),(1,0),(-1,0), O_{E}\right\} \simeq Z_{2} \times Z_{2}$.
Example \#2: 4T5-4_4_3.1-a
Consider the Toroidal Belyi pair (E, β) in terms of
$E: y^{2}=x^{3}+x^{2}+16 x+180 \quad$ and $\quad \beta(x, y)=\left(4 y+x^{2}+56\right) / 108$. The quasi-critical points are torsion:
$\begin{array}{lllll}\text { Point } & (4,-18) & (22,-108) & (-2,12) & O_{E} \\ \text { Order } & 4\end{array}$
ese points do not form a group.

Example \#3: 5T5-5_4.1_4.1-a

Consider the Toroidal Belyi pair (E, β) in terms of
$E: y^{2}=x^{3}+5 x+10 \quad$ and $\quad \beta(x, y)=((x-5) y+16) / 32$.
The quasi-critical points are not torsion:
$\begin{array}{cccccc}\text { Point } & (6,-16) & (1,4) & (6,16) & (1,-4) & O_{E} \\ \text { Order } & \infty & \infty & \infty & \infty & \end{array}$
These points do not form a group.
Motivating Questions
Given the following:
$\cdot(E, \beta)$ a Toroidal Belyĭ pair.
$\cdot \Gamma=\beta^{-1}(\{0,1, \infty\})$ as the set of quasi-critical points.
We ask the questions:

- When does Γ form a subgroup of $(E(\mathbb{C}), \oplus)$?
- The elements in Γ must be points with finite order whenever Γ is a
group. When are the points in Γ torsion elements in $E(\mathbb{C})$,
regardless of Γ being a group?

Theorem (PRiME 2021)
Given the following:

- (X, ϕ) a Toroidal Bely̌̆ pair, and $G=\phi^{-1}(\{0,1, \infty\})$ as the set of quasi-critical points.
- $\beta=\phi \circ \psi$, where $\psi: E \rightarrow X$ is any non-constant isogeny, and
$\Gamma=\beta^{-1}(\{0,1, \infty\})$.
We have the main results:
- (E, β) is a Toroidal Belyı̆ pair.
Γ is contained in the torsion in $E(\mathbb{C})$ whenever G is contained in the torsion in $X(\mathbb{C})$.
Γ is a group whenever G is group.

Corollary
There are infinitely many Toroidal Belyĭ pairs where the set of quasi- critical points forms a group.

Computing Examples

Degree of Belyi Map	Total from LMDFB	Total Number of Successfully Processed	Number with Quasi-Critical Points All Torsion
3	1	$1(100 \%)$	$1(100 \%)$
4	2	$2(000 \%)$	$2(100 \%)$
5	7	$7(100 \%)$	$1(14 \%)$
6	35	$29(83 \%)$	$7(24 \%)$
7	73	$15(21 \%)$	$0(0 \%)$
8	94	$30(32 \%)$	$2(7 \%)$
9	39	$23(59 \%)$	$0(0 \%)$
Totals	251	$107(43 \%)$	$13(12 \%)$

Future Work

- Modify the Sage code to run faster in order to get more examples Find more examples of imprimitive Toroidal Belyǐ maps with quasi-critical points that form a group.
Create an accessible website containing all the information on the data found.

References

1] PRiME 2021 GitHub Repository.
https://github.com/PRiME-2021/Algor ithms
2] Sage Mathematics Software System.
http://www.sagemath.org
[3] Ernesto Girondo and Gabino González-Diez. Introduction to Compact Riemann Surfaces and Dessins d'Enfants. London Mathematical Society Student Texts, Volume 79 (2012).
[4] The L-functions and Modular Forms Database (LMFDB)
http://www.1mfdb.org
[5] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, Volume 106. Second Edition (2009).
6] Joseph H. Silverman and John T. Tate. Rational points on elliptic curves. Undergraduate Texts in Mathematics (1993).

Acknowledgements

- Dr. Edray Herber Goins (Pomona College)
- Dr. Alex Barrios (Carleton College)
- Dr. Rachel Davis (University of Wisconsin at Madison)
- Department of Mathematics, Pomona College

National Security Agency (H98230-21-1-0015)

